
Package: conText (via r-universe)
August 20, 2024

Version 2.0.0

Title 'a la Carte' on Text (ConText) Embedding Regression

Description A fast, flexible and transparent framework to estimate
context-specific word and short document embeddings using the
'a la carte' embeddings approach developed by Khodak et al.
(2018) <arXiv:1805.05388> and evaluate hypotheses about
covariate effects on embeddings using the regression framework
developed by Rodriguez et al.
(2021)<https://github.com/prodriguezsosa/EmbeddingRegression>.

License GPL-3

Depends R (>= 3.6.0)

Imports dplyr, Matrix (>= 1.3-2), quanteda (>= 3.0.0), text2vec (>=
0.6), reshape2 (>= 1.4.4), fastDummies (>= 1.6.3), stringr (>=
1.4.0), tidyr (>= 1.1.3), ggplot2, methods

URL https://github.com/prodriguezsosa/EmbeddingRegression

BugReports https://github.com/prodriguezsosa/ConText/issues

Maintainer Pedro L. Rodriguez <pedro.rodriguezsosa@gmail.com>

Encoding UTF-8

LazyData true

VignetteBuilder knitr

Language en-US

RoxygenNote 7.2.3

Roxygen list(markdown = TRUE)

Suggests SnowballC (>= 0.7.0), hunspell, knitr, rmarkdown, formatR

Repository https://prodriguezsosa.r-universe.dev

RemoteUrl https://github.com/prodriguezsosa/context

RemoteRef HEAD

RemoteSha c373ea228ecdbe05597080e19b570f373c628c03

1

https://arxiv.org/abs/1805.05388
https://github.com/prodriguezsosa/EmbeddingRegression
https://github.com/prodriguezsosa/EmbeddingRegression
https://github.com/prodriguezsosa/ConText/issues

2 Contents

Contents

bootstrap_contrast . 3
bootstrap_nns . 3
bootstrap_ols . 5
bootstrap_similarity . 6
build_conText . 6
build_dem . 7
build_fem . 8
compute_contrast . 8
compute_similarity . 9
compute_transform . 10
conText . 11
contrast_nns . 13
cos_sim . 16
cr_glove_subset . 17
cr_sample_corpus . 18
cr_transform . 18
dem . 19
dem_group . 20
dem_sample . 21
embed_target . 22
feature_sim . 23
fem . 24
find_cos_sim . 25
find_nns . 26
get_context . 27
get_cos_sim . 28
get_grouped_similarity . 30
get_local_vocab . 32
get_ncs . 33
get_nns . 34
get_nns_ratio . 37
get_seq_cos_sim . 39
ncs . 41
nns . 42
nns_ratio . 44
permute_contrast . 46
permute_ols . 46
plot_nns_ratio . 47
prototypical_context . 48
run_jack_ols . 49
run_ols . 50
tokens_context . 50

Index 52

bootstrap_contrast 3

bootstrap_contrast Bootstrap similarity and ratio computations

Description

Bootstrap similarity and ratio computations

Usage

bootstrap_contrast(
target_embeddings1 = NULL,
target_embeddings2 = NULL,
pre_trained = NULL,
candidates = NULL,
norm = NULL

)

Arguments

target_embeddings1

ALC embeddings for group 1
target_embeddings2

ALC embeddings for group 2

pre_trained a V x D matrix of numeric values - pretrained embeddings with V = size of
vocabulary and D = embedding dimensions

candidates character vector defining the candidates for nearest neighbors - e.g. output from
get_local_vocab

norm character = c("l2", "none") - set to ’l2’ for cosine similarity and to ’none’ for
inner product (see ?sim2 in text2vec)

Value

a list with three elements, nns for group 1, nns for group 2 and nns_ratio comparing with ratios of
similarities between the two groups

bootstrap_nns Bootstrap nearest neighbors

Description

Uses bootstrapping –sampling of of texts with replacement– to identify the top N nearest neighbors
based on cosine or inner product similarity.

4 bootstrap_nns

Usage

bootstrap_nns(
context = NULL,
pre_trained = NULL,
transform = TRUE,
transform_matrix = NULL,
candidates = NULL,
bootstrap = TRUE,
num_bootstraps = 100,
confidence_level = 0.95,
N = 50,
norm = "l2"

)

Arguments

context (character) vector of texts - context variable in get_context output
pre_trained (numeric) a F x D matrix corresponding to pretrained embeddings. F = number

of features and D = embedding dimensions. rownames(pre_trained) = set of
features for which there is a pre-trained embedding.

transform (logical) - if TRUE (default) apply the a la carte transformation, if FALSE ouput
untransformed averaged embedding.

transform_matrix

(numeric) a D x D ’a la carte’ transformation matrix. D = dimensions of pre-
trained embeddings.

candidates (character) vector defining the candidates for nearest neighbors - e.g. output
from get_local_vocab.

bootstrap (logical) if TRUE, bootstrap similarity values - sample from texts with replace-
ment. Required to get std. errors.

num_bootstraps (numeric) - number of bootstraps to use.
confidence_level

(numeric in (0,1)) confidence level e.g. 0.95
N (numeric) number of nearest neighbors to return.
norm (character) - how to compute the similarity (see ?text2vec::sim2):

"l2" cosine similarity
"none" inner product

Value

a data.frame with the following columns:

feature (character) vector of feature terms corresponding to the nearest neighbors.
value (numeric) cosine/inner product similarity between texts and feature. Average over boot-

strapped samples if bootstrap = TRUE.
std.error (numeric) std. error of the similarity value. Column is dropped if bootstrap = FALSE.
lower.ci (numeric) (if bootstrap = TRUE) lower bound of the confidence interval.
upper.ci (numeric) (if bootstrap = TRUE) upper bound of the confidence interval.

bootstrap_ols 5

Examples

find contexts of immigration
context_immigration <- get_context(x = cr_sample_corpus,

target = 'immigration',
window = 6,
valuetype = "fixed",
case_insensitive = TRUE,
hard_cut = FALSE, verbose = FALSE)

find local vocab (use it to define the candidate of nearest neighbors)
local_vocab <- get_local_vocab(context_immigration$context, pre_trained = cr_glove_subset)

set.seed(42L)
nns_immigration <- bootstrap_nns(context = context_immigration$context,

pre_trained = cr_glove_subset,
transform_matrix = cr_transform,
transform = TRUE,
candidates = local_vocab,
bootstrap = TRUE,
num_bootstraps = 100,
confidence_level = 0.95,
N = 50,
norm = "l2")

head(nns_immigration)

bootstrap_ols Bootstrap OLS

Description

Bootstrap model coefficients and standard errors

Usage

bootstrap_ols(Y = NULL, X = NULL, stratify = NULL)

Arguments

Y vector of regression model’s dependent variable (embedded context)

X data.frame of model independent variables (covariates)

stratify covariates to stratify when bootstrapping

Value

list with two elements, betas = list of beta_coefficients (D dimensional vectors); normed_betas =
tibble with the norm of the non-intercept coefficients

6 build_conText

bootstrap_similarity Boostrap similarity vector

Description

Boostrap similarity vector

Usage

bootstrap_similarity(
target_embeddings = NULL,
pre_trained = NULL,
candidates = NULL,
norm = NULL

)

Arguments

target_embeddings

the target embeddings (embeddings of context)
pre_trained a V x D matrix of numeric values - pretrained embeddings with V = size of

vocabulary and D = embedding dimensions
candidates character vector defining the candidates for nearest neighbors - e.g. output from

get_local_vocab

norm character = c("l2", "none") - set to ’l2’ for cosine similarity and to ’none’ for
inner product (see ?sim2 in text2vec)

Value

vector(s) of cosine similarities between alc embedding and nearest neighbor candidates

build_conText build a conText-class object

Description

build a conText-class object

Usage

build_conText(
Class = "conText",
x_conText,
normed_coefficients = data.frame(),
features = character(),
Dimnames = list()

)

build_dem 7

Arguments

Class defines the class of this object (fixed)

x_conText a dgCMatrix class matrix

normed_coefficients

a data.frame withe the normed coefficients and other statistics

features features used in computing the embeddings

Dimnames row (features) and columns (NULL) names

build_dem build a dem-class object

Description

build a dem-class object

Usage

build_dem(
Class = "em",
x_dem,
docvars = data.frame(),
features = character(),
Dimnames = list()

)

Arguments

Class defines tha class of this object (fixed)

x_dem a dgCMatrix class matrix

docvars document covariates, inherited from dfm and corpus, subset to embeddable doc-
uments

features features used in computing the embeddings

Dimnames row (documents) and columns (NULL) names

8 compute_contrast

build_fem build a fem-class object

Description

build a fem-class object

Usage

build_fem(
Class = "fem",
x_fem,
features = character(),
counts = numeric(),
Dimnames = list()

)

Arguments

Class defines the class of this object (fixed)

x_fem a dgCMatrix class matrix

features features used in computing the embeddings

counts counts of features used in computing embeddings

Dimnames row (features) and columns (NULL) names

compute_contrast Compute similarity and similarity ratios

Description

Compute similarity and similarity ratios

Usage

compute_contrast(
target_embeddings1 = NULL,
target_embeddings2 = NULL,
pre_trained = NULL,
candidates = NULL,
norm = NULL

)

compute_similarity 9

Arguments

target_embeddings1

ALC embeddings for group 1
target_embeddings2

ALC embeddings for group 2
pre_trained a V x D matrix of numeric values - pretrained embeddings with V = size of

vocabulary and D = embedding dimensions
candidates character vector defining the candidates for nearest neighbors - e.g. output from

get_local_vocab

norm character = c("l2", "none") - set to ’l2’ for cosine similarity and to ’none’ for
inner product (see ?sim2 in text2vec)

Value

a list with three elements, nns for group 1, nns for group 2 and nns_ratio comparing with ratios of
similarities between the two groups

compute_similarity Compute similarity vector (sub-function of bootstrap_similarity)

Description

Compute similarity vector (sub-function of bootstrap_similarity)

Usage

compute_similarity(
target_embeddings = NULL,
pre_trained = NULL,
candidates = NULL,
norm = NULL

)

Arguments

target_embeddings

the target embeddings (embeddings of context)
pre_trained a V x D matrix of numeric values - pretrained embeddings with V = size of

vocabulary and D = embedding dimensions
candidates character vector defining the candidates for nearest neighbors - e.g. output from

get_local_vocab

norm character = c("l2", "none") - set to ’l2’ for cosine similarity and to ’none’ for
inner product (see ?sim2 in text2vec)

Value

vector of cosine similarities between alc embedding and nearest neighbor candidates

10 compute_transform

compute_transform Compute transformation matrix A

Description

Computes a transformation matrix, given a feature-co-occurrence matrix and corresponding pre-
trained embeddings.

Usage

compute_transform(x, pre_trained, weighting = 500)

Arguments

x a (quanteda) fcm-class object.

pre_trained (numeric) a F x D matrix corresponding to pretrained embeddings, usually trained
on the same corpus as that used for x. F = number of features and D = embed-
ding dimensions. rownames(pre_trained) = set of features for which there is a
pre-trained embedding

weighting (character or numeric) weighting options:

1 no weighting.
"log" weight by the log of the frequency count.
numeric threshold based weighting (= 1 if token count meets threshold, 0 ow).

Recommended: use log for small corpora, a numeric threshold for larger cor-
pora.

Value

a dgTMatrix-class D x D non-symmetrical matrix (D = dimensions of pre-trained embedding
space) corresponding to an ’a la carte’ transformation matrix. This matrix is optimized for the
corpus and pre-trained embeddings employed.

Examples

library(quanteda)

note, cr_sample_corpus is too small to produce sensical word vectors

tokenize
toks <- tokens(cr_sample_corpus)

construct feature-co-occurrence matrix
toks_fcm <- fcm(toks, context = "window", window = 6,
count = "weighted", weights = 1 / (1:6), tri = FALSE)

you will generally want to estimate a new (corpus-specific)
GloVe model, we will use cr_glove_subset instead

conText 11

see the Quick Start Guide to see a full example.

estimate transform
local_transform <- compute_transform(x = toks_fcm,
pre_trained = cr_glove_subset, weighting = 'log')

conText Embedding regression

Description

Estimates an embedding regression model with options to use bootstrapping (to be deprecated)
or jackknife debiasing to estimate confidence intervals and a permutation test for inference (see
https://github.com/prodriguezsosa/conText for details.)

Usage

conText(
formula,
data,
pre_trained,
transform = TRUE,
transform_matrix,
bootstrap = FALSE,
num_bootstraps = 100,
stratify = FALSE,
jackknife = TRUE,
confidence_level = 0.95,
permute = TRUE,
num_permutations = 100,
window = 6L,
valuetype = c("glob", "regex", "fixed"),
case_insensitive = TRUE,
hard_cut = FALSE,
verbose = TRUE

)

Arguments

formula a symbolic description of the model to be fitted with a target word as a DV e.g.
immigrant ~ party + gender. To use a phrase as a DV, place it in quotations
e.g. "immigrant refugees" ~ party + gender. To use all covariates included
in the data, you can use . on RHS, e.g.immigrant ~ .. If you wish to treat
the full document as you DV, rather than a single target word, use . on the
LHS e.g. . ~ party + gender. If you wish to use all covariates on the RHS
use immigrant ~ .. Any character or factor covariates will automatically be
converted to a set of binary (0/1s) indicator variables for each group, leaving
the first level out of the regression.

12 conText

data a quanteda tokens-class object with the necessary document variables. Co-
variates must be either binary indicator variables or "transformable" into binary
indicator variables. conText will automatically transform any non-indicator vari-
ables into binary indicator variables (multiple if more than 2 classes), leaving out
a "base" category.

pre_trained (numeric) a F x D matrix corresponding to pretrained embeddings. F = number
of features and D = embedding dimensions. rownames(pre_trained) = set of
features for which there is a pre-trained embedding.

transform (logical) if TRUE (default) apply the ’a la carte’ transformation, if FALSE ouput
untransformed averaged embeddings.

transform_matrix

(numeric) a D x D ’a la carte’ transformation matrix. D = dimensions of pre-
trained embeddings.

bootstrap (logical) if TRUE, use bootstrapping – sample from texts with replacement and
re-run regression on each sample.

num_bootstraps (numeric) number of bootstraps to use (at least 100). Ignored if bootstrap =
FALSE.

stratify (logical) if TRUE, stratify by discrete covariates when bootstrapping.

jackknife (logical) if TRUE (default), jackknife (leave one out) debiasing is implemented.
Implies n resamples.

confidence_level

(numeric in (0,1)) confidence level e.g. 0.95

permute (logical) if TRUE, compute empirical p-values using permutation test
num_permutations

(numeric) number of permutations to use

window the number of context words to be displayed around the keyword

valuetype the type of pattern matching: "glob" for "glob"-style wildcard expressions;
"regex" for regular expressions; or "fixed" for exact matching. See value-
type for details.

case_insensitive

logical; if TRUE, ignore case when matching a pattern or dictionary values

hard_cut (logical) - if TRUE then a context must have window x 2 tokens, if FALSE it can
have window x 2 or fewer (e.g. if a doc begins with a target word, then context
will have window tokens rather than window x 2)

verbose (logical) - if TRUE, report the documents that had no overlapping features with
the pretrained embeddings provided.

Value

a conText-class object - a D x M matrix with D = dimensions of the pre-trained feature embed-
dings provided and M = number of covariates including the intercept. These represent the esti-
mated regression coefficients. These can be combined to compute ALC embeddings for different
combinations of covariates. The object also includes various informative attributes, importantly a
data.frame with the following columns:

contrast_nns 13

coefficient (character) name of (covariate) coefficient.

value (numeric) norm of the corresponding beta coefficient (debiased if jackknife = TRUE).

std.error (numeric) (if bootstrap = TRUE or jackknife = TRUE) std. error of the (debiased if
jackknife = TRUE) norm of the beta coefficient.

lower.ci (numeric) (if bootstrap = TRUE or jackknife = TRUE) lower bound of the (debiased if
jackknife = TRUE) confidence interval.

upper.ci (numeric) (if bootstrap = TRUE or jackknife = TRUE) upper bound of the (debiased if
jackknife = TRUE) confidence interval.

p.value (numeric) (if permute = TRUE) empirical p.value of the norm of the coefficient.

Examples

library(quanteda)

tokenize corpus
toks <- tokens(cr_sample_corpus)

given the target word "immigration"
set.seed(2021L)
model1 <- conText(formula = immigration ~ party + gender,

data = toks,
pre_trained = cr_glove_subset,
transform = TRUE,
transform_matrix = cr_transform,
bootstrap=FALSE,
jackknife = TRUE,
confidence_level = 0.95,
permute = TRUE,
num_permutations = 10,
window = 6,
case_insensitive = TRUE,
verbose = FALSE)

notice, character/factor covariates are automatically "dummified"
rownames(model1)

the beta coefficient 'partyR' in this case corresponds to the alc embedding
of "immigration" for Republican party speeches

(normed) coefficient table
model1@normed_coefficients

contrast_nns Contrast nearest neighbors

14 contrast_nns

Description

Computes the ratio of cosine similarities between group embeddings and features –that is, for any
given feature it first computes the similarity between that feature and each group embedding, and
then takes the ratio of these two similarities. This ratio captures how "discriminant" a feature is of
a given group.

Usage

contrast_nns(
x,
groups = NULL,
pre_trained = NULL,
transform = TRUE,
transform_matrix = NULL,
bootstrap = TRUE,
num_bootstraps = 100,
confidence_level = 0.95,
permute = TRUE,
num_permutations = 100,
candidates = NULL,
N = 20,
verbose = TRUE

)

Arguments

x (quanteda) tokens-class object

groups (numeric, factor, character) a binary variable of the same length as x

pre_trained (numeric) a F x D matrix corresponding to pretrained embeddings. F = number
of features and D = embedding dimensions. rownames(pre_trained) = set of
features for which there is a pre-trained embedding.

transform (logical) if TRUE (default) apply the ’a la carte’ transformation, if FALSE ouput
untransformed averaged embeddings.

transform_matrix

(numeric) a D x D ’a la carte’ transformation matrix. D = dimensions of pre-
trained embeddings.

bootstrap (logical) if TRUE, use bootstrapping – sample from texts with replacement and
re-estimate cosine ratios for each sample. Required to get std. errors.

num_bootstraps (numeric) - number of bootstraps to use
confidence_level

(numeric in (0,1)) confidence level e.g. 0.95

permute (logical) - if TRUE, compute empirical p-values using a permutation test
num_permutations

(numeric) - number of permutations to use

candidates (character) vector of candidate features for nearest neighbors

contrast_nns 15

N (numeric) - nearest neighbors are subset to the union of the N neighbors of each
group (if NULL, ratio is computed for all features)

verbose (logical) - if TRUE, report the documents that had no overlapping features with
the pretrained embeddings provided.

Value

a data.frame with following columns:

feature (character) vector of feature terms corresponding to the nearest neighbors.

value (numeric) ratio of cosine similarities. Average over bootstrapped samples if bootstrap =
TRUE.

std.error (numeric) std. error of the ratio of cosine similarties. Column is dropped if bootsrap =
FALSE.

lower.ci (numeric) (if bootstrap = TRUE) lower bound of the confidence interval.

upper.ci (numeric) (if bootstrap = TRUE) upper bound of the confidence interval.

p.value (numeric) empirical p-value. Column is dropped if permute = FALSE.

Examples

library(quanteda)

cr_toks <- tokens(cr_sample_corpus)

immig_toks <- tokens_context(x = cr_toks,
pattern = "immigration", window = 6L, hard_cut = FALSE, verbose = TRUE)

sample 100 instances of the target term, stratifying by party (only for example purposes)
set.seed(2022L)
immig_toks <- tokens_sample(immig_toks, size = 100, by = docvars(immig_toks, 'party'))

set.seed(42L)
party_nns <- contrast_nns(x = immig_toks,
groups = docvars(immig_toks, 'party'),
pre_trained = cr_glove_subset,
transform = TRUE, transform_matrix = cr_transform,
bootstrap = TRUE,
num_bootstraps = 100,
confidence_level = 0.95,
permute = TRUE, num_permutations = 10,
candidates = NULL, N = 20,
verbose = FALSE)

head(party_nns)

16 cos_sim

cos_sim Compute the cosine similarity between one or more ALC embeddings
and a set of features.

Description

Compute the cosine similarity between one or more ALC embeddings and a set of features.

Usage

cos_sim(
x,
pre_trained,
features = NULL,
stem = FALSE,
language = "porter",
as_list = TRUE,
show_language = TRUE

)

Arguments

x a (quanteda) dem-class or fem-class object.

pre_trained (numeric) a F x D matrix corresponding to pretrained embeddings. F = number
of features and D = embedding dimensions. rownames(pre_trained) = set of
features for which there is a pre-trained embedding.

features (character) features of interest.

stem (logical) - If TRUE, both features and rownames(pre_trained) are stemmed
and average cosine similarities are reported. We recommend you remove mis-
spelled words from pre_trained as these can significantly influence the aver-
age.

language the name of a recognized language, as returned by getStemLanguages, or a
two- or three-letter ISO-639 code corresponding to one of these languages (see
references for the list of codes).

as_list (logical) if FALSE all results are combined into a single data.frame If TRUE, a
list of data.frames is returned with one data.frame per feature.

show_language (logical) if TRUE print out message with language used for stemming.

Value

a data.frame or list of data.frames (one for each target) with the following columns:

target (character) rownames of x, the labels of the ALC embeddings. NA if is.null(rownames(x)).

feature (character) feature terms defined in the features argument.

value (numeric) cosine similarity between x and feature.

cr_glove_subset 17

Examples

library(quanteda)

tokenize corpus
toks <- tokens(cr_sample_corpus)

build a tokenized corpus of contexts sorrounding a target term
immig_toks <- tokens_context(x = toks, pattern = "immigr*", window = 6L)

build document-feature matrix
immig_dfm <- dfm(immig_toks)

construct document-embedding-matrix
immig_dem <- dem(immig_dfm, pre_trained = cr_glove_subset,
transform = TRUE, transform_matrix = cr_transform, verbose = FALSE)

to get group-specific embeddings, average within party
immig_wv_party <- dem_group(immig_dem, groups = immig_dem@docvars$party)

compute the cosine similarity between each party's embedding and a specific set of features
cos_sim(x = immig_wv_party, pre_trained = cr_glove_subset,
features = c('reform', 'enforcement'), as_list = FALSE)

cr_glove_subset GloVe subset

Description

A subset of a GloVe embeddings model trained on the top 5000 features in the Congressional
Record Record corpus covering the 111th - 114th Congresses, and limited to speeches by Democrat
and Republican representatives.

Usage

cr_glove_subset

Format

A matrix with 500 rows and 300 columns:

row each row corresponds to a word

column each column corresponds to a dimension in the embedding space ...

Source

https://www.dropbox.com/s/p84wzv8bdmziog8/cr_glove.R?dl=0

https://www.dropbox.com/s/p84wzv8bdmziog8/cr_glove.R?dl=0

18 cr_transform

cr_sample_corpus Congressional Record sample corpus

Description

A (quanteda) corpus containing a sample of the United States Congressional Record (daily tran-
scripts) covering the 111th to 114th Congresses. The raw corpus is first subset to speeches contain-
ing the regular expression "immig*". Then 100 docs from each party-gender pair is randomly sam-
pled. For full data and pre-processing file, see: https://www.dropbox.com/sh/jsyrag7opfo7l7i/AAB1z7tumLuKihGu2-
FDmhmKa?dl=0 For nominate scores see: https://voteview.com/data

Usage

cr_sample_corpus

Format

A quanteda corpus with 200 documents and 3 docvars:

party party of speaker, (D)emocrat or (R)epublican

gender gender of speaker, (F)emale or (M)ale

nominate_dim1 dimension 1 of the nominate score ...

Source

https://data.stanford.edu/congress_text

cr_transform Transformation matrix

Description

A square matrix corresponding to the transformation matrix computed using the cr_glove_subset
embeddings and corresponding corpus.

Usage

cr_transform

Format

A 300 by 300 matrix.

Source

https://www.dropbox.com/s/p84wzv8bdmziog8/cr_glove.R?dl=0

https://data.stanford.edu/congress_text
https://www.dropbox.com/s/p84wzv8bdmziog8/cr_glove.R?dl=0

dem 19

dem Build a document-embedding matrix

Description

Given a document-feature-matrix, for each document, multiply its feature counts (columns) with
their corresponding pretrained word embeddings and average (usually referred to as averaged or
additive document embeddings). If specified and a transformation matrix is provided, multiply
the document embeddings by the transformation matrix to obtain the corresponding a la carte
document embeddings. (see eq 2: https://arxiv.org/pdf/1805.05388.pdf)

Usage

dem(x, pre_trained, transform = TRUE, transform_matrix, verbose = TRUE)

Arguments

x a quanteda (dfm-class) document-feature-matrix

pre_trained (numeric) a F x D matrix corresponding to pretrained embeddings. F = number
of features and D = embedding dimensions. rownames(pre_trained) = set of
features for which there is a pre-trained embedding.

transform (logical) if TRUE (default) apply the ’a la carte’ transformation, if FALSE ouput
untransformed averaged embeddings.

transform_matrix

(numeric) a D x D ’a la carte’ transformation matrix. D = dimensions of pre-
trained embeddings.

verbose (logical) - if TRUE, report the documents that had no overlapping features with
the pretrained embeddings provided.

Value

a N x D (dem-class) document-embedding-matrix corresponding to the ALC embeddings for each
document. N = number of documents (that could be embedded), D = dimensions of pretrained
embeddings. This object inherits the document variables in x, the dfm used. These can be accessed
calling the attribute: @docvars. Note, documents with no overlapping features with the pretrained
embeddings provided are automatically dropped. For a list of the documents that were embedded
call the attribute: @Dimnames$docs.

Examples

library(quanteda)

tokenize corpus
toks <- tokens(cr_sample_corpus)

build a tokenized corpus of contexts sorrounding a target term
immig_toks <- tokens_context(x = toks, pattern = "immigr*", window = 6L)

20 dem_group

construct document-feature-matrix
immig_dfm <- dfm(immig_toks)

construct document-embedding-matrix
immig_dem <- dem(immig_dfm, pre_trained = cr_glove_subset,
transform = TRUE, transform_matrix = cr_transform, verbose = FALSE)

dem_group Average document-embeddings in a dem by a grouping variable

Description

Average embeddings in a dem by a grouping variable, by averaging over columns within groups
and creating new "documents" with the group labels. Similar in essence to dfm_group.

Usage

dem_group(x, groups = NULL)

Arguments

x a (dem-class) document-embedding-matrix
groups a character or factor variable equal in length to the number of documents

Value

a G x D (dem-class) document-embedding-matrix corresponding to the ALC embeddings for each
group. G = number of unique groups defined in the groups variable, D = dimensions of pretrained
embeddings.

Examples

library(quanteda)

tokenize corpus
toks <- tokens(cr_sample_corpus)

build a tokenized corpus of contexts sorrounding a target term
immig_toks <- tokens_context(x = toks, pattern = "immigr*", window = 6L)

build document-feature matrix
immig_dfm <- dfm(immig_toks)

construct document-embedding-matrix
immig_dem <- dem(immig_dfm, pre_trained = cr_glove_subset,
transform = TRUE, transform_matrix = cr_transform, verbose = FALSE)

to get group-specific embeddings, average within party
immig_wv_party <- dem_group(immig_dem,
groups = immig_dem@docvars$party)

dem_sample 21

dem_sample Randomly sample documents from a dem

Description

Take a random sample of documents from a dem with/without replacement and with the option to
group by a variable in dem@docvars. Note: dem_sample uses dplyr::sample_frac underneath
the hood, as such size refers to the fraction of total obs.

Usage

dem_sample(x, size = NULL, replace = FALSE, weight = NULL, by = NULL)

Arguments

x a (dem-class) document-embedding-matrix

size <tidy-select> For sample_n(), the number of rows to select. For sample_frac(),
the fraction of rows to select. If tbl is grouped, size applies to each group.

replace Sample with or without replacement?

weight (numeric) Sampling weights. Vector of non-negative numbers of length nrow(x).
Weights are automatically standardised to sum to 1 (see dplyr::sample_frac).
May not be applied when by is used.

by (character or factor vector) either of length 1 with the name of grouping variable
for sampling. Refer to the variable WITH QUOTATIONS e.g. "party". Must
be a variable in dem@docvars. OR of length nrow(x).

Value

a size x D (dem-class) document-embedding-matrix corresponding to the sampled ALC embed-
dings. Note, @features in the resulting object will correspond to the original @features, that is,
they are not subsetted to the sampled documents. For a list of the documents that were sampled call
the attribute: @Dimnames$docs.

Examples

library(quanteda)

tokenize corpus
toks <- tokens(cr_sample_corpus)

build a tokenized corpus of contexts sorrounding a target term
immig_toks <- tokens_context(x = toks, pattern = "immigr*", window = 6L)

build document-feature matrix
immig_dfm <- dfm(immig_toks)

construct document-embedding-matrix

22 embed_target

immig_dem <- dem(immig_dfm, pre_trained = cr_glove_subset,
transform = TRUE, transform_matrix = cr_transform, verbose = FALSE)

to get a random sample
immig_wv_party <- dem_sample(immig_dem, size = 10,
replace = TRUE, by = "party")

also works
immig_wv_party <- dem_sample(immig_dem, size = 10,
replace = TRUE, by = immig_dem@docvars$party)

embed_target Embed target using either: (a) a la carte OR (b) simple (untrans-
formed) averaging of context embeddings

Description

For a vector of contexts (generally the context variable in get_context output), return the trans-
formed (or untransformed) additive embeddings, aggregated or by instance, along with the local
vocabulary. Keep track of which contexts were embedded and which were excluded.

Usage

embed_target(
context,
pre_trained,
transform = TRUE,
transform_matrix,
aggregate = TRUE,
verbose = TRUE

)

Arguments

context (character) vector of texts - context variable in get_context output
pre_trained (numeric) a F x D matrix corresponding to pretrained embeddings. F = number

of features and D = embedding dimensions. rownames(pre_trained) = set of
features for which there is a pre-trained embedding.

transform (logical) if TRUE (default) apply the ’a la carte’ transformation, if FALSE ouput
untransformed averaged embeddings.

transform_matrix

(numeric) a D x D ’a la carte’ transformation matrix. D = dimensions of pre-
trained embeddings.

aggregate (logical) - if TRUE (default) output will return one embedding (i.e. averaged
over all instances of target) if FALSE output will return one embedding per
instance

verbose (logical) - report the observations that had no overlap the provided pre-trained
embeddings

feature_sim 23

Details

required packages: quanteda

Value

list with three elements:

target_embedding the target embedding(s). Values and dimensions will vary with the above set-
tings.

local_vocab (character) vocabulary that appears in the set of contexts provided.

obs_included (integer) rows of the context vector that were included in the computation. A row
(context) is excluded when none of the words in the context are present in the pre-trained
embeddings provided.

Examples

find contexts for term immigration
context_immigration <- get_context(x = cr_sample_corpus, target = 'immigration',

window = 6, valuetype = "fixed", case_insensitive = TRUE,
hard_cut = FALSE, verbose = FALSE)

contexts_vectors <- embed_target(context = context_immigration$context,
pre_trained = cr_glove_subset,
transform = TRUE, transform_matrix = cr_transform,
aggregate = FALSE, verbose = FALSE)

feature_sim Given two feature-embedding-matrices, compute "parallel" cosine
similarities between overlapping features.

Description

Efficient way of comparing two corpora along many features simultaneously.

Usage

feature_sim(x, y, features = character(0))

Arguments

x a (fem-class) feature embedding matrix.

y a (fem-class) feature embedding matrix.

features (character) vector of features for which to compute similarity scores. If not
defined then all overlapping features will be used.

24 fem

Value

a data.frame with following columns:

feature (character) overlapping features

value (numeric) cosine similarity between overlapping features.

Examples

library(quanteda)

tokenize corpus
toks <- tokens(cr_sample_corpus)

create feature co-occurrence matrix for each party (set tri = FALSE to work with fem)
fcm_D <- fcm(toks[docvars(toks, 'party') == "D",],
context = "window", window = 6, count = "frequency", tri = FALSE)
fcm_R <- fcm(toks[docvars(toks, 'party') == "R",],
context = "window", window = 6, count = "frequency", tri = FALSE)

compute feature-embedding matrix
fem_D <- fem(fcm_D, pre_trained = cr_glove_subset,
transform = TRUE, transform_matrix = cr_transform, verbose = FALSE)
fem_R <- fem(fcm_R, pre_trained = cr_glove_subset,
transform = TRUE, transform_matrix = cr_transform, verbose = FALSE)

compare "horizontal" cosine similarity
feat_comp <- feature_sim(x = fem_R, y = fem_D)

fem Create an feature-embedding matrix

Description

Given a featureco-occurrence matrix for each feature, multiply its feature counts (columns) with
their corresponding pre-trained embeddings and average (usually referred to as averaged or additive
embeddings). If specified and a transformation matrix is provided, multiply the feature embeddings
by the transformation matrix to obtain the corresponding a la carte embeddings. (see eq 2:
https://arxiv.org/pdf/1805.05388.pdf)

Usage

fem(x, pre_trained, transform = TRUE, transform_matrix, verbose = TRUE)

Arguments

x a quanteda (fcm-class) feature-co-occurrence-matrix

pre_trained (numeric) a F x D matrix corresponding to pretrained embeddings. F = number
of features and D = embedding dimensions. rownames(pre_trained) = set of
features for which there is a pre-trained embedding.

find_cos_sim 25

transform (logical) if TRUE (default) apply the ’a la carte’ transformation, if FALSE ouput
untransformed averaged embeddings.

transform_matrix

(numeric) a D x D ’a la carte’ transformation matrix. D = dimensions of pre-
trained embeddings.

verbose (logical) - if TRUE, report the features that had no overlapping (co-occurring)
features with the pretrained embeddings provided.

Value

a fem-class object

Examples

library(quanteda)

tokenize corpus
toks <- tokens(cr_sample_corpus)

create feature co-occurrence matrix (set tri = FALSE to work with fem)
toks_fcm <- fcm(toks, context = "window", window = 6,
count = "frequency", tri = FALSE)

compute feature-embedding matrix
toks_fem <- fem(toks_fcm, pre_trained = cr_glove_subset,
transform = TRUE, transform_matrix = cr_transform, verbose = FALSE)

find_cos_sim Find cosine similarities between target and candidate words

Description

Find cosine similarities between target and candidate words

Usage

find_cos_sim(target_embedding, pre_trained, candidates, norm = "l2")

Arguments

target_embedding

matrix of numeric values

pre_trained matrix of numeric values - pretrained embeddings

candidates character vector defining vocabulary to subset comparison to

norm character = c("l2", "none") - how to scale input matrices. If they are already
scaled - use "none" (see ?sim2)

26 find_nns

Value

a vector of cosine similarities of length candidates

find_nns Return nearest neighbors based on cosine similarity

Description

Return nearest neighbors based on cosine similarity

Usage

find_nns(
target_embedding,
pre_trained,
N = 5,
candidates = NULL,
norm = "l2",
stem = FALSE,
language = "porter"

)

Arguments

target_embedding

(numeric) 1 x D matrix. D = dimensions of pretrained embeddings.

pre_trained (numeric) a F x D matrix corresponding to pretrained embeddings. F = number
of features and D = embedding dimensions. rownames(pre_trained) = set of
features for which there is a pre-trained embedding.

N (numeric) number of nearest neighbors to return.

candidates (character) vector of candidate features for nearest neighbors

norm (character) - how to compute similarity (see ?text2vec::sim2):

"l2" cosine similarity
"none" inner product

stem (logical) - whether to stem candidates when evaluating nns. Default is FALSE.
If TRUE, candidate stems are ranked by their average cosine similarity to the tar-
get. We recommend you remove misspelled words from candidate set candidates
as these can significantly influence the average.

language the name of a recognized language, as returned by getStemLanguages, or a
two- or three-letter ISO-639 code corresponding to one of these languages (see
references for the list of codes).

Value

(character) vector of nearest neighbors to target

get_context 27

Examples

find_nns(target_embedding = cr_glove_subset['immigration',],
pre_trained = cr_glove_subset, N = 5,
candidates = NULL, norm = "l2", stem = FALSE)

get_context Get context words (words within a symmetric window around the tar-
get word/phrase) sorrounding a user defined target.

Description

A wrapper function for quanteda’s kwic() function that subsets documents to where target is
present before tokenizing to speed up processing, and concatenates kwic’s pre/post variables into a
context column.

Usage

get_context(
x,
target,
window = 6L,
valuetype = "fixed",
case_insensitive = TRUE,
hard_cut = FALSE,
what = "word",
verbose = TRUE

)

Arguments

x (character) vector - this is the set of documents (corpus) of interest.

target (character) vector - these are the target words whose contexts we want to eval-
uate This vector may include a single token, a phrase or multiple tokens and/or
phrases.

window (numeric) - defines the size of a context (words around the target).

valuetype the type of pattern matching: "glob" for "glob"-style wildcard expressions;
"regex" for regular expressions; or "fixed" for exact matching. See value-
type for details.

case_insensitive

logical; if TRUE, ignore case when matching a pattern or dictionary values

hard_cut (logical) - if TRUE then a context must have window x 2 tokens, if FALSE it can
have window x 2 or fewer (e.g. if a doc begins with a target word, then context
will have window tokens rather than window x 2)

what (character) defines which quanteda tokenizer to use. You will rarely want to
change this. For chinese text you may want to set what = 'fastestword'.

verbose (logical) - if TRUE, report the total number of target instances found.

28 get_cos_sim

Value

a data.frame with the following columns:

docname (character) document name to which instances belong to.

target (character) targets.

context (numeric) pre/post variables in kwic() output concatenated.

Note

target in the return data.frame is equivalent to kwic()’s keyword output variable, so it may not
match the user-defined target exactly if valuetype is not fixed.

Examples

get context words sorrounding the term immigration
context_immigration <- get_context(x = cr_sample_corpus, target = 'immigration',

window = 6, valuetype = "fixed", case_insensitive = FALSE,
hard_cut = FALSE, verbose = FALSE)

get_cos_sim Given a tokenized corpus, compute the cosine similarities of the re-
sulting ALC embeddings and a defined set of features.

Description

This is a wrapper function for cos_sim() that allows users to go from a tokenized corpus to results
with the option to bootstrap cosine similarities and get the corresponding std. errors.

Usage

get_cos_sim(
x,
groups = NULL,
features = character(0),
pre_trained,
transform = TRUE,
transform_matrix,
bootstrap = TRUE,
num_bootstraps = 100,
confidence_level = 0.95,
stem = FALSE,
language = "porter",
as_list = TRUE

)

get_cos_sim 29

Arguments

x a (quanteda) tokens-class object

groups (numeric, factor, character) a binary variable of the same length as x

features (character) features of interest

pre_trained (numeric) a F x D matrix corresponding to pretrained embeddings. F = number
of features and D = embedding dimensions. rownames(pre_trained) = set of
features for which there is a pre-trained embedding.

transform (logical) if TRUE (default) apply the ’a la carte’ transformation, if FALSE ouput
untransformed averaged embeddings.

transform_matrix

(numeric) a D x D ’a la carte’ transformation matrix. D = dimensions of pre-
trained embeddings.

bootstrap (logical) if TRUE, use bootstrapping – sample from texts with replacement and
re-estimate cosine similarities for each sample. Required to get std. errors. If
groups defined, sampling is automatically stratified.

num_bootstraps (integer) number of bootstraps to use.

confidence_level

(numeric in (0,1)) confidence level e.g. 0.95

stem (logical) - If TRUE, both features and rownames(pre_trained) are stemmed
and average cosine similarities are reported. We recommend you remove mis-
spelled words from pre_trained as these can significantly influence the aver-
age.

language the name of a recognized language, as returned by getStemLanguages, or a
two- or three-letter ISO-639 code corresponding to one of these languages (see
references for the list of codes).

as_list (logical) if FALSE all results are combined into a single data.frame If TRUE, a
list of data.frames is returned with one data.frame per feature.

Value

a data.frame or list of data.frames (one for each target) with the following columns:

target (character) rownames of x, the labels of the ALC embeddings.

feature (character) feature terms defined in the features argument.

value (numeric) cosine similarity between x and feature. Average over bootstrapped samples if
bootstrap = TRUE.

std.error (numeric) std. error of the similarity value. Column is dropped if bootstrap = FALSE.

lower.ci (numeric) (if bootstrap = TRUE) lower bound of the confidence interval.

upper.ci (numeric) (if bootstrap = TRUE) upper bound of the confidence interval.

30 get_grouped_similarity

Examples

library(quanteda)

tokenize corpus
toks <- tokens(cr_sample_corpus)

build a tokenized corpus of contexts sorrounding a target term
immig_toks <- tokens_context(x = toks, pattern = "immigration", window = 6L)

sample 100 instances of the target term, stratifying by party (only for example purposes)
set.seed(2022L)
immig_toks <- tokens_sample(immig_toks, size = 100, by = docvars(immig_toks, 'party'))

compute the cosine similarity between each group's embedding
and a specific set of features
set.seed(2021L)
get_cos_sim(x = immig_toks,

groups = docvars(immig_toks, 'party'),
features = c("reform", "enforce"),
pre_trained = cr_glove_subset,
transform = TRUE,
transform_matrix = cr_transform,
bootstrap = TRUE,
num_bootstraps = 100,
confidence_level = 0.95,
stem = TRUE,
as_list = FALSE)

get_grouped_similarity

Get averaged similarity scores between target word(s) and one or two
vectors of candidate words.

Description

Get similarity scores between a target word or words and a comparison vector of one candidate
word or words. When two vectors of candidate words are provided (second_vec is not NULL), the
function calculates the cosine similarity between a composite index of the two vectors. This is
operationalized as the mean similarity of the target word to the first vector of terms plus negative
one multiplied by the mean similarity to the second vector of terms.

Usage

get_grouped_similarity(
x,
target,
first_vec,
second_vec,
pre_trained,

get_grouped_similarity 31

transform_matrix,
group_var,
window = window,
norm = "l2",
remove_punct = FALSE,
remove_symbols = FALSE,
remove_numbers = FALSE,
remove_separators = FALSE,
valuetype = "fixed",
hard_cut = FALSE,
case_insensitive = TRUE

)

Arguments

x a (quanteda) corpus object

target (character) vector of words

first_vec (character) vector of words

second_vec (character) vector of words

pre_trained (numeric) a F x D matrix corresponding to pretrained embeddings, usually trained
on the same corpus as that used for x. F = number of features and D = embed-
ding dimensions. rownames(pre_trained) = set of features for which there is a
pre-trained embedding

transform_matrix

(numeric) a D x D ’a la carte’ transformation matrix. D = dimensions of pre-
trained embeddings.

group_var (character) variable name in corpus object defining grouping variable

window (numeric) - defines the size of a context (words around the target)

norm (character) - "l2" for l2 normalized cosine similarity and "none" for dot product

remove_punct (logical) - if TRUE remove all characters in the Unicode "Punctuation" [P] class

remove_symbols (logical) - if TRUE remove all characters in the Unicode "Symbol" [S] class

remove_numbers (logical) - if TRUE remove tokens that consist only of numbers, but not words
that start with digits, e.g. 2day

remove_separators

(logical) - if TRUE remove separators and separator characters (Unicode "Sepa-
rator" [Z] and "Control" [C] categories)

valuetype the type of pattern matching: "glob" for "glob"-style wildcard expressions;
"regex" for regular expressions; or "fixed" for exact matching

hard_cut (logical) - if TRUE then a context must have window x 2 tokens, if FALSE it can
have window x 2 or fewer (e.g. if a doc begins with a target word, then context
will have window tokens rather than window x 2)

case_insensitive

(logical) - if TRUE, ignore case when matching a target patter

32 get_local_vocab

Value

a data.frame with the following columns:

group the grouping variable specified for the analysis

val (numeric) cosine similarity scores

Examples

quanteda::docvars(cr_sample_corpus, 'year') <- rep(2011:2014, each = 50)
cos_simsdf <- get_grouped_similarity(cr_sample_corpus,

group_var = "year",
target = "immigration",
first_vec = c("left", "lefty"),
second_vec = c("right", "rightwinger"),
pre_trained = cr_glove_subset,
transform_matrix = cr_transform,
window = 12L,
norm = "l2")

get_local_vocab Identify words common to a collection of texts and a set of pretrained
embeddings.

Description

Local vocab consists of the intersect between the set of pretrained embeddings and the collection of
texts.

Usage

get_local_vocab(context, pre_trained)

Arguments

context (character) vector of contexts (usually context in get_context() output)

pre_trained (numeric) a F x D matrix corresponding to pretrained embeddings. F = number
of features and D = embedding dimensions. rownames(pre_trained) = set of
features for which there is a pre-trained embedding.

Value

(character) vector of words common to the texts and pretrained embeddings.

Examples

find local vocab (use it to define the candidate of nearest neighbors)
local_vocab <- get_local_vocab(cr_sample_corpus, pre_trained = cr_glove_subset)

get_ncs 33

get_ncs Given a set of tokenized contexts, find the top N nearest contexts.

Description

This is a wrapper function for ncs() that allows users to go from a tokenized corpus to results with
the option to bootstrap cosine similarities and get the corresponding std. errors.

Usage

get_ncs(
x,
N = 5,
groups = NULL,
pre_trained,
transform = TRUE,
transform_matrix,
bootstrap = TRUE,
num_bootstraps = 100,
confidence_level = 0.95,
as_list = TRUE

)

Arguments

x a (quanteda) tokens-class object

N (numeric) number of nearest contexts to return

groups a character or factor variable equal in length to the number of documents

pre_trained (numeric) a F x D matrix corresponding to pretrained embeddings. F = number
of features and D = embedding dimensions. rownames(pre_trained) = set of
features for which there is a pre-trained embedding.

transform (logical) if TRUE (default) apply the ’a la carte’ transformation, if FALSE ouput
untransformed averaged embeddings.

transform_matrix

(numeric) a D x D ’a la carte’ transformation matrix. D = dimensions of pre-
trained embeddings.

bootstrap (logical) if TRUE, use bootstrapping – sample from x with replacement and re-
estimate cosine similarities for each sample. Required to get std. errors. If
groups defined, sampling is automatically stratified.

num_bootstraps (integer) number of bootstraps to use.
confidence_level

(numeric in (0,1)) confidence level e.g. 0.95

as_list (logical) if FALSE all results are combined into a single data.frame If TRUE, a
list of data.frames is returned with one data.frame per embedding

34 get_nns

Value

a data.frame or list of data.frames (one for each target) with the following columns:

target (character) rownames of x, the labels of the ALC embeddings. NA if is.null(rownames(x)).

context (character) contexts collapsed into single documents (i.e. untokenized).

rank (character) rank of context in terms of similarity with x.

value (numeric) cosine similarity between x and context.

std.error (numeric) std. error of the similarity value. Column is dropped if bootstrap = FALSE.

lower.ci (numeric) (if bootstrap = TRUE) lower bound of the confidence interval.

upper.ci (numeric) (if bootstrap = TRUE) upper bound of the confidence interval.

Examples

library(quanteda)

tokenize corpus
toks <- tokens(cr_sample_corpus)

build a tokenized corpus of contexts sorrounding a target term
immig_toks <- tokens_context(x = toks, pattern = "immigration",
window = 6L, rm_keyword = FALSE)

sample 100 instances of the target term, stratifying by party (only for example purposes)
set.seed(2022L)
immig_toks <- tokens_sample(immig_toks, size = 100, by = docvars(immig_toks, 'party'))

compare nearest contexts between groups
set.seed(2021L)
immig_party_ncs <- get_ncs(x = immig_toks,

N = 10,
groups = docvars(immig_toks, 'party'),
pre_trained = cr_glove_subset,
transform = TRUE,
transform_matrix = cr_transform,
bootstrap = TRUE,
num_bootstraps = 100,
confidence_level = 0.95,
as_list = TRUE)

nearest neighbors of "immigration" for Republican party
immig_party_ncs[["D"]]

get_nns Given a tokenized corpus and a set of candidate neighbors, find the
top N nearest neighbors.

get_nns 35

Description

This is a wrapper function for nns() that allows users to go from a tokenized corpus to results with
the option to bootstrap cosine similarities and get the corresponding std. errors.

Usage

get_nns(
x,
N = 10,
groups = NULL,
candidates = character(0),
pre_trained,
transform = TRUE,
transform_matrix,
bootstrap = TRUE,
num_bootstraps = 100,
confidence_level = 0.95,
stem = FALSE,
language = "porter",
as_list = TRUE

)

Arguments

x a (quanteda) tokens-class object

N (numeric) number of nearest neighbors to return

groups a character or factor variable equal in length to the number of documents

candidates (character) vector of features to consider as candidates to be nearest neighbor
You may for example want to only consider features that meet a certain count
threshold or exclude stop words etc. To do so you can simply identify the set
of features you want to consider and supply these as a character vector in the
candidates argument.

pre_trained (numeric) a F x D matrix corresponding to pretrained embeddings. F = number
of features and D = embedding dimensions. rownames(pre_trained) = set of
features for which there is a pre-trained embedding.

transform (logical) if TRUE (default) apply the ’a la carte’ transformation, if FALSE ouput
untransformed averaged embeddings.

transform_matrix

(numeric) a D x D ’a la carte’ transformation matrix. D = dimensions of pre-
trained embeddings.

bootstrap (logical) if TRUE, use bootstrapping – sample from x with replacement and re-
estimate cosine similarities for each sample. Required to get std. errors. If
groups defined, sampling is automatically stratified.

num_bootstraps (integer) number of bootstraps to use.
confidence_level

(numeric in (0,1)) confidence level e.g. 0.95

36 get_nns

stem (logical) - whether to stem candidates when evaluating nns. Default is FALSE.
If TRUE, candidate stems are ranked by their average cosine similarity to the tar-
get. We recommend you remove misspelled words from candidate set candidates
as these can significantly influence the average.

language the name of a recognized language, as returned by getStemLanguages, or a
two- or three-letter ISO-639 code corresponding to one of these languages (see
references for the list of codes).

as_list (logical) if FALSE all results are combined into a single data.frame If TRUE, a
list of data.frames is returned with one data.frame per group.

Value

a data.frame or list of data.frames (one for each target) with the following columns:

target (character) rownames of x, the labels of the ALC embeddings. NA if is.null(rownames(x)).

feature (character) features identified as nearest neighbors.

rank (character) rank of feature in terms of similarity with x.

value (numeric) cosine similarity between x and feature. Average over bootstrapped samples if
bootstrap = TRUE.

std.error (numeric) std. error of the similarity value. Column is dropped if bootstrap = FALSE.

lower.ci (numeric) (if bootstrap = TRUE) lower bound of the confidence interval.

upper.ci (numeric) (if bootstrap = TRUE) upper bound of the confidence interval.

Examples

library(quanteda)

tokenize corpus
toks <- tokens(cr_sample_corpus)

build a tokenized corpus of contexts sorrounding a target term
immig_toks <- tokens_context(x = toks, pattern = "immigration", window = 6L)

sample 100 instances of the target term, stratifying by party (only for example purposes)
set.seed(2022L)
immig_toks <- tokens_sample(immig_toks, size = 100, by = docvars(immig_toks, 'party'))

we limit candidates to features in our corpus
feats <- featnames(dfm(immig_toks))

compare nearest neighbors between groups
set.seed(2021L)
immig_party_nns <- get_nns(x = immig_toks, N = 10,

groups = docvars(immig_toks, 'party'),
candidates = feats,
pre_trained = cr_glove_subset,
transform = TRUE,
transform_matrix = cr_transform,
bootstrap = TRUE,

get_nns_ratio 37

num_bootstraps = 100,
stem = TRUE,
as_list = TRUE)

nearest neighbors of "immigration" for Republican party
immig_party_nns[["R"]]

get_nns_ratio Given a corpus and a binary grouping variable, computes the ratio of
cosine similarities over the union of their respective N nearest neigh-
bors.

Description

This is a wrapper function for nns_ratio() that allows users to go from a tokenized corpus to
results with the option to: (1) bootstrap cosine similarity ratios and get the corresponding std.
errors. (2) use a permutation test to get empirical p-values for inference.

Usage

get_nns_ratio(
x,
N = 10,
groups,
numerator = NULL,
candidates = character(0),
pre_trained,
transform = TRUE,
transform_matrix,
bootstrap = TRUE,
num_bootstraps = 100,
confidence_level = 0.95,
permute = TRUE,
num_permutations = 100,
stem = FALSE,
language = "porter",
verbose = TRUE,
show_language = TRUE

)

Arguments

x a (quanteda) tokens object

N (numeric) number of nearest neighbors to return. Nearest neighbors consist of
the union of the top N nearest neighbors of the embeddings in x. If these overlap,
then resulting N will be smaller than 2*N.

groups a character or factor variable equal in length to the number of documents

38 get_nns_ratio

numerator (character) defines which group is the nuemerator in the ratio.

candidates (character) vector of features to consider as candidates to be nearest neighbor
You may for example want to only consider features that meet a certian count
threshold or exclude stop words etc. To do so you can simply identify the set
of features you want to consider and supply these as a character vector in the
candidates argument.

pre_trained (numeric) a F x D matrix corresponding to pretrained embeddings. F = number
of features and D = embedding dimensions. rownames(pre_trained) = set of
features for which there is a pre-trained embedding.

transform (logical) if TRUE (default) apply the ’a la carte’ transformation, if FALSE ouput
untransformed averaged embeddings.

transform_matrix

(numeric) a D x D ’a la carte’ transformation matrix. D = dimensions of pre-
trained embeddings.

bootstrap (logical) if TRUE, use bootstrapping – sample from texts with replacement and
re-estimate cosine similarity ratios for each sample. Required to get std. errors.
If groups defined, sampling is automatically stratified.

num_bootstraps (integer) number of bootstraps to use.
confidence_level

(numeric in (0,1)) confidence level e.g. 0.95

permute (logical) if TRUE, compute empirical p-values using permutation test
num_permutations

(numeric) number of permutations to use.

stem (logical) - whether to stem candidates when evaluating nns. Default is FALSE.
If TRUE, candidate stems are ranked by their average cosine similarity to the tar-
get. We recommend you remove misspelled words from candidate set candidates
as these can significantly influence the average.

language the name of a recognized language, as returned by getStemLanguages, or a
two- or three-letter ISO-639 code corresponding to one of these languages (see
references for the list of codes).

verbose provide information on which group is the numerator

show_language (logical) if TRUE print out message with language used for stemming.

Value

a data.frame with following columns:

feature (character) features in candidates (or all features if candidates not defined), one in-
stance for each embedding in x.

value (numeric) cosine similarity ratio between x and feature. Average over bootstrapped samples
if bootstrap = TRUE.

std.error (numeric) std. error of the similarity value. Column is dropped if bootstrap = FALSE.

lower.ci (numeric) (if bootstrap = TRUE) lower bound of the confidence interval.

upper.ci (numeric) (if bootstrap = TRUE) upper bound of the confidence interval.

get_seq_cos_sim 39

p.value (numeric) empirical p-value of bootstrapped ratio of cosine similarities if permute =
TRUE, if FALSE, column is dropped.

group (character) group in groups for which feature belongs to the top N nearest neighbors. If
"shared", the feature appeared as top nearest neighbor for both groups.

Examples

library(quanteda)

tokenize corpus
toks <- tokens(cr_sample_corpus)

build a tokenized corpus of contexts sorrounding a target term
immig_toks <- tokens_context(x = toks, pattern = "immigration", window = 6L)

sample 100 instances of the target term, stratifying by party (only for example purposes)
set.seed(2022L)
immig_toks <- tokens_sample(immig_toks, size = 100, by = docvars(immig_toks, 'party'))

we limit candidates to features in our corpus
feats <- featnames(dfm(immig_toks))

compute ratio
set.seed(2021L)
immig_nns_ratio <- get_nns_ratio(x = immig_toks,

N = 10,
groups = docvars(immig_toks, 'party'),
numerator = "R",
candidates = feats,
pre_trained = cr_glove_subset,
transform = TRUE,
transform_matrix = cr_transform,
bootstrap = TRUE,
num_bootstraps = 100,
permute = FALSE,
num_permutations = 5,
verbose = FALSE)

head(immig_nns_ratio)

get_seq_cos_sim Calculate cosine similarities between target word and candidates
words over sequenced variable using ALC embedding approach

Description

Calculate cosine similarities between target word and candidates words over sequenced variable
using ALC embedding approach

40 get_seq_cos_sim

Usage

get_seq_cos_sim(
x,
seqvar,
target,
candidates,
pre_trained,
transform_matrix,
window = 6,
valuetype = "fixed",
case_insensitive = TRUE,
hard_cut = FALSE,
verbose = TRUE

)

Arguments

x (character) vector - this is the set of documents (corpus) of interest

seqvar ordered variable such as list of dates or ordered iseology scores

target (character) vector - target word

candidates (character) vector of features of interest

pre_trained (numeric) a F x D matrix corresponding to pretrained embeddings. F = number
of features and D = embedding dimensions. rownames(pre_trained) = set of
features for which there is a pre-trained embedding.

transform_matrix

(numeric) a D x D ’a la carte’ transformation matrix. D = dimensions of pre-
trained embeddings.

window (numeric) - defines the size of a context (words around the target).

valuetype the type of pattern matching: "glob" for "glob"-style wildcard expressions;
"regex" for regular expressions; or "fixed" for exact matching. See value-
type for details.

case_insensitive

logical; if TRUE, ignore case when matching a pattern or dictionary values

hard_cut (logical) - if TRUE then a context must have window x 2 tokens, if FALSE it can
have window x 2 or fewer (e.g. if a doc begins with a target word, then context
will have window tokens rather than window x 2)

verbose (logical) - if TRUE, report the total number of target instances found.

Value

a data.frame with one column for each candidate term with corresponding cosine similarity values
and one column for seqvar.

ncs 41

Examples

library(quanteda)

gen sequence var (here: year)
docvars(cr_sample_corpus, 'year') <- rep(2011:2014, each = 50)
cos_simsdf <- get_seq_cos_sim(x = cr_sample_corpus,
seqvar = docvars(cr_sample_corpus, 'year'),
target = "equal",
candidates = c("immigration", "immigrants"),
pre_trained = cr_glove_subset,
transform_matrix = cr_transform)

ncs Given a set of embeddings and a set of tokenized contexts, find the top
N nearest contexts.

Description

Given a set of embeddings and a set of tokenized contexts, find the top N nearest contexts.

Usage

ncs(x, contexts_dem, contexts = NULL, N = 5, as_list = TRUE)

Arguments

x a (quanteda) dem-class or fem-class object.

contexts_dem a dem-class object corresponding to the ALC embeddings of candidate con-
texts.

contexts a (quanteda) tokens-class object of tokenized candidate contexts. Note, these
must correspond to the same contexts in contexts_dem. If NULL, then the
context (document) ids will be output instead of the text.

N (numeric) number of nearest contexts to return

as_list (logical) if FALSE all results are combined into a single data.frame If TRUE, a
list of data.frames is returned with one data.frame per embedding

Value

a data.frame or list of data.frames (one for each target) with the following columns:

target (character) rownames of x, the labels of the ALC embeddings. NA if is.null(rownames(x)).

context (character) contexts collapsed into single documents (i.e. untokenized). If contexts is
NULL then this variable will show the context (document) ids which you can use to merge.

rank (character) rank of context in terms of similarity with x.

value (numeric) cosine similarity between x and context.

42 nns

Examples

library(quanteda)

tokenize corpus
toks <- tokens(cr_sample_corpus)

build a tokenized corpus of contexts sorrounding a target term
immig_toks <- tokens_context(x = toks, pattern = "immigr*",
window = 6L, rm_keyword = FALSE)

build document-feature matrix
immig_dfm <- dfm(immig_toks)

construct document-embedding-matrix
immig_dem <- dem(immig_dfm, pre_trained = cr_glove_subset,
transform = TRUE, transform_matrix = cr_transform, verbose = FALSE)

to get group-specific embeddings, average within party
immig_wv_party <- dem_group(immig_dem, groups = immig_dem@docvars$party)

find nearest contexts by party
setting as_list = FALSE combines each group's
results into a single data.frame (useful for joint plotting)
ncs(x = immig_wv_party, contexts_dem = immig_dem,
contexts = immig_toks, N = 5, as_list = TRUE)

nns Given a set of embeddings and a set of candidate neighbors, find the
top N nearest neighbors.

Description

Given a set of embeddings and a set of candidate neighbors, find the top N nearest neighbors.

Usage

nns(
x,
N = 10,
candidates = character(0),
pre_trained,
stem = FALSE,
language = "porter",
as_list = TRUE,
show_language = TRUE

)

nns 43

Arguments

x a dem-class or fem-class object.

N (numeric) number of nearest neighbors to return

candidates (character) vector of features to consider as candidates to be nearest neighbor
You may for example want to only consider features that meet a certain count
threshold or exclude stop words etc. To do so you can simply identify the set
of features you want to consider and supply these as a character vector in the
candidates argument.

pre_trained (numeric) a F x D matrix corresponding to pretrained embeddings. F = number
of features and D = embedding dimensions. rownames(pre_trained) = set of
features for which there is a pre-trained embedding.

stem (logical) - whether to stem candidates when evaluating nns. Default is FALSE.
If TRUE, candidate stems are ranked by their average cosine similarity to the tar-
get. We recommend you remove misspelled words from candidate set candidates
as these can significantly influence the average.

language the name of a recognized language, as returned by getStemLanguages, or a
two- or three-letter ISO-639 code corresponding to one of these languages (see
references for the list of codes).

as_list (logical) if FALSE all results are combined into a single data.frame If TRUE, a
list of data.frames is returned with one data.frame per group.

show_language (logical) if TRUE print out message with language used for stemming.

Value

a data.frame or list of data.frames (one for each target) with the following columns:

target (character) rownames of x, the labels of the ALC embeddings. NA if is.null(rownames(x)).

feature (character) features identified as nearest neighbors.

rank (character) rank of feature in terms of similarity with x.

value (numeric) cosine similarity between x and feature.

Examples

library(quanteda)

tokenize corpus
toks <- tokens(cr_sample_corpus)

build a tokenized corpus of contexts sorrounding a target term
immig_toks <- tokens_context(x = toks, pattern = "immigr*", window = 6L)

build document-feature matrix
immig_dfm <- dfm(immig_toks)

construct document-embedding-matrix
immig_dem <- dem(immig_dfm, pre_trained = cr_glove_subset,
transform = TRUE, transform_matrix = cr_transform, verbose = FALSE)

44 nns_ratio

to get group-specific embeddings, average within party
immig_wv_party <- dem_group(immig_dem, groups = immig_dem@docvars$party)

find nearest neighbors by party
setting as_list = FALSE combines each group's
results into a single tibble (useful for joint plotting)
immig_nns <- nns(immig_wv_party, pre_trained = cr_glove_subset,
N = 5, candidates = immig_wv_party@features, stem = FALSE, as_list = TRUE)

nns_ratio Computes the ratio of cosine similarities for two embeddings over the
union of their respective top N nearest neighbors.

Description

Computes the ratio of cosine similarities between group embeddings and features –that is, for any
given feature it first computes the similarity between that feature and each group embedding, and
then takes the ratio of these two similarities. This ratio captures how "discriminant" a feature is of
a given group. Values larger (smaller) than 1 mean the feature is more (less) discriminant of the
group in the numerator (denominator).

Usage

nns_ratio(
x,
N = 10,
numerator = NULL,
candidates = character(0),
pre_trained,
stem = FALSE,
language = "porter",
verbose = TRUE,
show_language = TRUE

)

Arguments

x a (quanteda) dem-class or fem-class object.
N (numeric) number of nearest neighbors to return. Nearest neighbors consist of

the union of the top N nearest neighbors of the embeddings in x. If these overlap,
then resulting N will be smaller than 2*N.

numerator (character) defines which group is the nuemerator in the ratio
candidates (character) vector of features to consider as candidates to be nearest neighbor

You may for example want to only consider features that meet a certian count
threshold or exclude stop words etc. To do so you can simply identify the set
of features you want to consider and supply these as a character vector in the
candidates argument.

nns_ratio 45

pre_trained (numeric) a F x D matrix corresponding to pretrained embeddings. F = number
of features and D = embedding dimensions. rownames(pre_trained) = set of
features for which there is a pre-trained embedding.

stem (logical) - whether to stem candidates when evaluating nns. Default is FALSE.
If TRUE, candidate stems are ranked by their average cosine similarity to the tar-
get. We recommend you remove misspelled words from candidate set candidates
as these can significantly influence the average.

language the name of a recognized language, as returned by getStemLanguages, or a
two- or three-letter ISO-639 code corresponding to one of these languages (see
references for the list of codes).

verbose report which group is the numerator and which group is the denominator.
show_language (logical) if TRUE print out message with language used for stemming.

Value

a data.frame with following columns:

feature (character) features in candidates (or all features if candidates not defined), one in-
stance for each embedding in x.

value (numeric) ratio of cosine similarities.

Examples

library(quanteda)

tokenize corpus
toks <- tokens(cr_sample_corpus)

build a tokenized corpus of contexts sorrounding a target term
immig_toks <- tokens_context(x = toks, pattern = "immigr*", window = 6L)

build document-feature matrix
immig_dfm <- dfm(immig_toks)

construct document-embedding-matrix
immig_dem <- dem(immig_dfm, pre_trained = cr_glove_subset,
transform = TRUE, transform_matrix = cr_transform, verbose = FALSE)

to get group-specific embeddings, average within party
immig_wv_party <- dem_group(immig_dem, groups = immig_dem@docvars$party)

compute the cosine similarity between each party's
embedding and a specific set of features
nns_ratio(x = immig_wv_party, N = 10, numerator = "R",
candidates = immig_wv_party@features,
pre_trained = cr_glove_subset, verbose = FALSE)

with stemming
nns_ratio(x = immig_wv_party, N = 10, numerator = "R",
candidates = immig_wv_party@features,
pre_trained = cr_glove_subset, stem = TRUE, verbose = FALSE)

46 permute_ols

permute_contrast Permute similarity and ratio computations

Description

Permute similarity and ratio computations

Usage

permute_contrast(
target_embeddings1 = NULL,
target_embeddings2 = NULL,
pre_trained = NULL,
candidates = NULL,
norm = NULL

)

Arguments

target_embeddings1

ALC embeddings for group 1
target_embeddings2

ALC embeddings for group 2

pre_trained a V x D matrix of numeric values - pretrained embeddings with V = size of
vocabulary and D = embedding dimensions

candidates character vector defining the candidates for nearest neighbors - e.g. output from
get_local_vocab

norm character = c("l2", "none") - set to ’l2’ for cosine similarity and to ’none’ for
inner product (see ?sim2 in text2vec)

Value

a list with three elements, nns for group 1, nns for group 2 and nns_ratio comparing with ratios of
similarities between the two groups

permute_ols Permute OLS

Description

Estimate empirical p-value using permuted regression

Usage

permute_ols(Y = NULL, X = NULL)

plot_nns_ratio 47

Arguments

Y vector of regression model’s dependent variable (embedded context)

X data.frame of model independent variables (covariates)

Value

list with two elements, betas = list of beta_coefficients (D dimensional vectors); normed_betas =
tibble with the norm of the non-intercept coefficients

plot_nns_ratio Plot output of get_nns_ratio()

Description

A way of visualizing the top nearest neighbors of a pair of ALC embeddings that captures how
"discriminant" each feature is of each embedding (group).

Usage

plot_nns_ratio(x, alpha = 0.01, horizontal = TRUE)

Arguments

x output of get_nns_ratio

alpha (numerical) betwee 0 and 1. Significance threshold to identify significant values.
These are denoted by a * on the plot.

horizontal (logical) defines the type of plot. if TRUE results are plotted on 1 dimension. If
FALSE, results are plotted on 2 dimensions, with the second dimension catpur-
ing the ranking of cosine ratio similarties.

Value

a ggplot-class object.

Examples

library(ggplot2)
library(quanteda)

tokenize corpus
toks <- tokens(cr_sample_corpus)

build a tokenized corpus of contexts sorrounding a target term
immig_toks <- tokens_context(x = toks, pattern = "immigration", window = 6L)

sample 100 instances of the target term, stratifying by party (only for example purposes)
set.seed(2022L)

48 prototypical_context

immig_toks <- tokens_sample(immig_toks, size = 100, by = docvars(immig_toks, 'party'))

we limit candidates to features in our corpus
feats <- featnames(dfm(immig_toks))

compute ratio
set.seed(2022L)
immig_nns_ratio <- get_nns_ratio(x = immig_toks,

N = 10,
groups = docvars(immig_toks, 'party'),
numerator = "R",
candidates = feats,
pre_trained = cr_glove_subset,
transform = TRUE,
transform_matrix = cr_transform,
bootstrap = TRUE,
num_bootstraps should be at least 100,
we use 10 here due to CRAN-imposed constraints
on example execution time
num_bootstraps = 100,
permute = FALSE,
num_permutations = 10,
verbose = FALSE)

plot_nns_ratio(x = immig_nns_ratio, alpha = 0.01, horizontal = TRUE)

prototypical_context Find most "prototypical" contexts.

Description

Contexts most similar on average to the full set of contexts.

Usage

prototypical_context(
context,
pre_trained,
transform = TRUE,
transform_matrix,
N = 3,
norm = "l2"

)

Arguments

context (character) vector of texts - context variable in get_context output
pre_trained (numeric) a F x D matrix corresponding to pretrained embeddings. F = number

of features and D = embedding dimensions. rownames(pre_trained) = set of
features for which there is a pre-trained embedding.

run_jack_ols 49

transform (logical) - if TRUE (default) apply the a la carte transformation, if FALSE ouput
untransformed averaged embedding.

transform_matrix

(numeric) a D x D ’a la carte’ transformation matrix. D = dimensions of pre-
trained embeddings.

N (numeric) number of most "prototypical" contexts to return.
norm (character) - how to compute similarity (see ?text2vec::sim2):

"l2" cosine similarity
"none" inner product

Value

a data.frame with the following columns:

doc_id (integer) document id.
typicality_score (numeric) average similarity score to all other contexts
context (character) contexts

Examples

find contexts of immigration
context_immigration <- get_context(x = cr_sample_corpus, target = 'immigration',

window = 6, valuetype = "fixed", case_insensitive = TRUE,
hard_cut = FALSE, verbose = FALSE)

identify top N prototypical contexts and compute typicality score
pt_context <- prototypical_context(context = context_immigration$context,
pre_trained = cr_glove_subset,
transform = TRUE,
transform_matrix = cr_transform,
N = 3, norm = 'l2')

run_jack_ols Run jackknife debiased OLS

Description

Run jackknife debiased OLS

Usage

run_jack_ols(X, Y, confidence_level = 0.95)

Arguments

X data.frame of model independent variables (covariates)
Y vector of regression model’s dependent variable (embedded context)
confidence_level

(numeric in (0,1)) confidence level e.g. 0.95

50 tokens_context

Value

list with two elements, betas = list of beta_coefficients (D dimensional vectors); normed_betas =
tibble with the norm and CIs of the non-intercept coefficients

run_ols Run OLS

Description

Run OLS

Usage

run_ols(Y = NULL, X = NULL)

Arguments

Y vector of regression model’s dependent variable (embedded context)

X data.frame of model independent variables (covariates)

Value

list with two elements, betas = list of beta_coefficients (D dimensional vectors); normed_betas =
tibble with the norm of the non-intercept coefficients

tokens_context Get the tokens of contexts sorrounding user defined patterns

Description

This function uses quanteda’s kwic() function to find the contexts around user defined patterns
(i.e. target words/phrases) and return a tokens object with the tokenized contexts and corresponding
document variables.

Usage

tokens_context(
x,
pattern,
window = 6L,
valuetype = c("glob", "regex", "fixed"),
case_insensitive = TRUE,
hard_cut = FALSE,
rm_keyword = TRUE,
verbose = TRUE

)

tokens_context 51

Arguments

x a (quanteda) tokens-class object

pattern a character vector, list of character vectors, dictionary, or collocations object.
See pattern for details.

window the number of context words to be displayed around the keyword

valuetype the type of pattern matching: "glob" for "glob"-style wildcard expressions;
"regex" for regular expressions; or "fixed" for exact matching. See value-
type for details.

case_insensitive

logical; if TRUE, ignore case when matching a pattern or dictionary values

hard_cut (logical) - if TRUE then a context must have window x 2 tokens, if FALSE it can
have window x 2 or fewer (e.g. if a doc begins with a target word, then context
will have window tokens rather than window x 2)

rm_keyword (logical) if FALSE, keyword matching pattern is included in the tokenized con-
texts

verbose (logical) if TRUE, report the total number of instances per pattern found

Value

a (quanteda) tokens-class. Each document in the output tokens object inherits the document
variables (docvars) of the document from whence it came, along with a column registering corre-
sponding the pattern used. This information can be retrieved using docvars().

Examples

library(quanteda)

tokenize corpus
toks <- tokens(cr_sample_corpus)

build a tokenized corpus of contexts sorrounding a target term
immig_toks <- tokens_context(x = toks, pattern = "immigr*", window = 6L)

Index

∗ bootstrap_nns
bootstrap_nns, 3

∗ compute_transform
compute_transform, 10

∗ conText
conText, 11

∗ contrast_nns
contrast_nns, 13

∗ cos_sim
cos_sim, 16

∗ datasets
cr_glove_subset, 17
cr_sample_corpus, 18
cr_transform, 18

∗ dem_group
dem_group, 20

∗ dem_sample
dem_sample, 21

∗ dem
dem, 19

∗ embed_target
embed_target, 22

∗ feature_sim
feature_sim, 23

∗ fem
fem, 24

∗ find_nns
find_nns, 26

∗ get_context
get_context, 27

∗ get_cos_sim
get_cos_sim, 28

∗ get_local_vocab
get_local_vocab, 32

∗ get_ncs
get_ncs, 33

∗ get_nns_ratio
get_nns_ratio, 37

∗ get_nns

get_nns, 34
∗ ncs

ncs, 41
∗ nns_ratio

nns_ratio, 44
∗ nns

nns, 42
∗ plot_nns_ratio

plot_nns_ratio, 47
∗ tokens_context

tokens_context, 50

bootstrap_contrast, 3
bootstrap_nns, 3
bootstrap_ols, 5
bootstrap_similarity, 6
build_conText, 6
build_dem, 7
build_fem, 8

compute_contrast, 8
compute_similarity, 9
compute_transform, 10
conText, 11
contrast_nns, 13
cos_sim, 16
cr_glove_subset, 17
cr_sample_corpus, 18
cr_transform, 18

dem, 19
dem_group, 20
dem_sample, 21
dictionary, 12, 27, 40, 51

embed_target, 22

feature_sim, 23
fem, 24
find_cos_sim, 25
find_nns, 26

52

INDEX 53

get_context, 27
get_cos_sim, 28
get_grouped_similarity, 30
get_local_vocab, 32
get_ncs, 33
get_nns, 34
get_nns_ratio, 37
get_seq_cos_sim, 39
getStemLanguages, 16, 26, 29, 36, 38, 43, 45

ncs, 41
nns, 42
nns_ratio, 44

pattern, 51
permute_contrast, 46
permute_ols, 46
plot_nns_ratio, 47
prototypical_context, 48

run_jack_ols, 49
run_ols, 50

tokens_context, 50

valuetype, 12, 27, 40, 51

	bootstrap_contrast
	bootstrap_nns
	bootstrap_ols
	bootstrap_similarity
	build_conText
	build_dem
	build_fem
	compute_contrast
	compute_similarity
	compute_transform
	conText
	contrast_nns
	cos_sim
	cr_glove_subset
	cr_sample_corpus
	cr_transform
	dem
	dem_group
	dem_sample
	embed_target
	feature_sim
	fem
	find_cos_sim
	find_nns
	get_context
	get_cos_sim
	get_grouped_similarity
	get_local_vocab
	get_ncs
	get_nns
	get_nns_ratio
	get_seq_cos_sim
	ncs
	nns
	nns_ratio
	permute_contrast
	permute_ols
	plot_nns_ratio
	prototypical_context
	run_jack_ols
	run_ols
	tokens_context
	Index

